Contribution from the Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6

Possible Cooperative Bonding between the Ru-Bonded and the S-Bonded SO₂ Groups in $CpRu(PPh_3)(SO_2)(S(SO_2)-4-C_6H_4Me)$

Alan Shaver^{*} and Pierre-Yves Plouffe¹

Received September 19, 1991

The complexes $CpRu(PPh_3)_2SR$, where $R = 4-C_6H_4Me$, $1-C_3H_7$, and $CHMe_2$, react with SO₂ to give two types of products; one, $CpRu(PPh_3)_2(S(SO_2)R)$, possesses a labile S-bonded SO₂ group, and the other type, $CpRu(PPh_3)(SO_2)(S(SO_2)R)$, possesses both S-bonded and Ru-bonded SO₂ groups neither of which are labile. The structure of CpRu(PPh₃)(SO₂)(S(SO₂)-4-C₆H₅Me) was determined: $P2_1/C$, a = 9.954 (2) Å, b = 18.423 (5) Å, c = 16.111 (4) Å, $\beta = 95.13$ (2)°, V = 2942.6 Å³, and Z = 4. During the initial stages of the reaction, complexes with two SO₂ groups are favored at low SO₂ concentrations, while those with only S-bonded SO₂ are favored at high concentrations. This observation and the differences in the relative ease of SO₂ loss between the two types of complexes is discussed in terms of cooperativity between the two SO₂ groups. This leads to reduced lability of the S-bonded SO₂ group when the complex contains a Ru-bonded SO₂ ligand (or a CO ligand).

Introduction

Interest in the transition metal chemistry of sulfur oxides in general, and SO_2 in particular, remains high. Environmental concerns about SO_2 in the atmosphere spurs studies into potential fixing reactions.² The SO₂ molecule shows a broad and diverse range of reactivity and types of bonding with complexes³ that illustrates many fundamental concepts. The molecule can enter the coordination sphere as a ligand much like CO. It can also form Lewis acid adducts with a free lone pair of a coordinated ligand atom such as iodide. The insertion reactions⁴ of SO₂ into metal-carbon bonds have been well studied.

As part of a research program on complexes containing catenated polysulfur and polysulfur oxide ligands, we have prepared complexes of the type $CpRu(PPh_3)(CO)E$, where $E = S_xR^{5}$ where x = 1-3, and $E = SS(O)_n R^6$, where n = 1 and 2. The parent complexes CpRu(PPh₃)₂SR^{5a} are activated with respect to loss of PPh₃, easily forming CpRu(PPh₃)(CO)(SR) or, in the absence of additional ligands, trimers⁷ of the type [CpRuSR]₃. In the presence of CS₂, insertion^{5a} into the Ru-S bond occurs to give the thioxanthates $CpRu(PPh_3)(S_2CSR)$. Thus, the complexes CpRu(PPh₃)₂SR are excellent candidates for reaction with SO₂ via substitution of PPh₃. Moreover, Kubas⁸ has shown that certain transition metal thiolates form labile adducts with SO2 at the sulfur atoms. We have observed labile adduct formation⁹ at the sulfur atom of CpW(CO)₂(PPh₃)SR. Finally, there are reports¹⁰ of SO₂ insertion into metal-nitrogen and metal-oxygen bonds which raise the interesting possibility of insertion into M-SR bonds. We report here the rich chemistry¹¹ of the thiolato complexes CpRu-

- (2) (a) Kubas, G. J.; Ryan, R. R. Inorg. Chem. 1984, 23, 3181.
 (b) Kubas, G. J.; Wasserman, H. J.; Ryan, R. R. Organometallics 1985, 4, 2012. (c) Kubas-Martin, H. J.; Ryan, K. R. Organometallics 1985, 4, 2012.
 (c) Kubas-Martin, K. A.; Kubas, G. J.; Ryan, R. R. Organometallics 1989, 8, 1910.
 (d) Kubas, G. J.; Ryan, R. R. J. Am. Chem. Soc. 1985, 107, 6138.
 (e) Kubas, G. J.; Wasserman, H. J.; Ryan, R. R. Organometallics 1985, 4, 419.
 (g) Lorenz, I.-P.; Walter, G.; Hiller, W. Chem. Ber. 1990, 123, 979.
 (h) Neher, A.; Lorenz, I.-P. Angew. Chem., Int. Ed. Engl. 1989, 28, 1342.
 (i) Farmer D. H.: Gukathasan, P. B. Chem. Soc. Delton. 28, 1342. (i) Farrar, D. H.; Gukathasan, R. R. J. Chem. Soc., Dalton Trans. 1989, 557.
- (a) Schenk, W. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 98 and references therein. (b) Kubas, G. J. Inorg. Chem. 1979, 18, 182 and (3) references therein.
- Wojcicki, A. Adv. Organomet. Chem. 1974, 12, 31.
- (a) Shaver, A.; Plouffe, P.-Y.; Bird, P.; Livingstone, E. Inorg. Chem. 1990, 29, 1826. (b) Shaver, A.; Plouffe, P.-Y. Manuscript in preparation.
- Shaver, A.; Plouffe, P.-Y. J. Am. Chem. Soc. 1991, 113, 7780. (7) Shaver, A.; Plouffe, P.-Y.; Liles, D.; Singleton, E. Inorg. Chem. 1992,
- 31, 997
- (8) Eller, P. G.; Kubas, G. J. J. Am. Chem. Soc. 1977, 99, 4346.
- (9) Shaver, A.; Lum, B. S. Unpublished results.
 (10) However X-ray structural confirmation is not included in these reports: (a) Wenschuh, E.; Zimmering, R. Z. Chem. 1988, 28, 190. (b) Alcock, N. W.; Platt, A. W. G.; Powell, H. H.; Pringle, P. G. J. Organomet. Chem. 1989, 361, 409.
- (11) Some of the results reported herein have appeared: Shaver, A.; Plouffe, P.-Y. Third Chemical Conference of North America, Toronto, 1988, June 5-10.

Table I. Crystallographic Data for $CpRu(PPh_3)(SO_2)(S(SO_2)-4-C_6H_4Me)$ (2a)

chem formula C ₃₀ H ₂₇ O ₄ PRuS ₃	fw = 676.73			
a = 9.954 (2) Å	space group: $P2_1/c$			
b = 18.423 (5) Å	$T = 20 \pm 1 ^{\circ}{\rm C}$			
c = 16.111 (4) Å	$\lambda = 1.54056 \text{ Å}$			
$\beta = 95.13 \ (2)^{\circ}$	$\rho_{\rm calcd} = 1.528 \ {\rm g \ cm^{-3}}$			
$V = 2942.6 (12) \text{ Å}^3$	$\mu(Cu \ K\alpha) = 7.18 \ mm^{-1}$			
Z = 4	$R^a = 0.062, R_w^b = 0.057$			
${}^{a}R = \sum F_{o} - F_{c} / \sum F_{o} .$ ${}^{b}R_{w} =$	$= \{ \sum w(F_0 - F_c)^2 / \sum w F_0 ^2 \}^{1/2}.$			

Table II. Positional Parameters and Isotropic Thermal Parameters $(Å^2)$ for CpRu(PPh₃)(SO₂(S(SO₂)-4-C₆H₄Me)

() 101	epite(i i ij)(be	(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	1141010)	
	x	у	Z	B _{iso} ^a
Ru	0.06569 (7)	0.35464 (4)	0.63700 (5)	2.57 (3)
S(1)	0.11166 (25)	0.22874 (14)	0.62128 (17)	3.32 (12)
S(2)	0.0982 (3)	0.38191 (15)	0.51244 (17)	3.34 (12)
S(3)	0.0482 (5)	0.15372 (23)	0.76701 (24)	7.15 (23)
P	0.29254 (24)	0.37175 (14)	0.68744 (16)	2.72 (11)
O(1)	0.2128 (7)	0.3705 (5)	0.4692 (4)	6.7 (5)
O(2)	-0.0077 (8)	0.4202 (4)	0.4603 (5)	5.5 (4)
O(3)	0.1218 (15)	0.0903 (7)	0.7496 (8)	14.4 (11)
O(4)	-0.0832 (12)	0.1437 (10)	0.7543 (9)	19.7 (13)
C(1)	0.5067 (10)	0.4628 (6)	0.6529 (7)	4.4 (6)
C(2)	0.5616 (12)	0.5262 (7)	0.6286 (9)	5.8 (7)
C(3)	0.4816 (12)	0.5843 (6)	0.6044 (7)	4.7 (6)
C(4)	0.3461 (12)	0.5770 (6)	0.6023 (7)	5.0 (6)
C(5)	0.2885 (10)	0.5134 (6)	0.6247 (7)	3.9 (5)
C(6)	0.3673 (9)	0.4551 (5)	0.6502 (6)	2.9 (4)
C(7)	0.3470 (10)	0.4489 (6)	0.8371 (7)	3.9 (5)
C(8)	0.3490 (12)	0.4568 (8)	0.9235 (8)	5.8 (8)
C(9)	0.3157 (14)	0.4011 (10)	0.9730 (8)	6.2 (9)
C(10)	0.2771 (12)	0.3365 (8)	0.9367 (8)	5.7 (8)
C(11)	0.2717 (10)	0.3270 (6)	0.8508 (7)	4.1 (6)
C(12)	0.3049 (9)	0.3839 (6)	0.7998 (6)	3.2 (5)
C(13)	0.4461 (10)	0.2914 (7)	0.5855 (7)	4.5 (6)
C(14)	0.5378 (13)	0.2412 (8)	0.5655 (8)	6.2 (7)
C(15)	0.6041 (12)	0.1958 (7)	0.6290 (10)	5.4 (7)
C(16)	0.5736 (13)	0.2067 (7)	0.7088 (9)	6.7 (8)
C(17)	0.4835 (13)	0.2600 (7)	0.7304 (7)	5.4 (6)
C(18)	0.4147 (9)	0.3008 (5)	0.6670 (7)	3.2 (5)
C(19)	-0.0052 (10)	0.4257 (7)	0.7326 (7)	4.5 (6)
C(20)	-0.0277 (10)	0.3548 (7)	0.7543 (7)	3.9 (6)
C(21)	-0.1217 (11)	0.3255 (7)	0.6952 (7)	4.5 (6)
C(22)	-0.1546 (10)	0.3824 (8)	0.6315 (8)	5.5 (7)
C(23)	-0.0803 (11)	0.4425 (6)	0.6572 (8)	4.5 (6)
C(24)	-0.0207 (11)	0.1137 (6)	0.5488 (8)	4.2 (6)
C(25)	-0.1098 (13)	0.0773 (6)	0.4928 (8)	5.0 (7)
C(26)	-0.1979 (12)	0.1161 (7)	0.4343 (8)	4.5 (6)
C(27)	-0.1913 (10)	0.1908 (7)	0.4375 (7)	4.2 (6)
	-0.1041 (11) -0.0147 (10)	0.2282 (6)	0.4941 (7)	3.8 (5)
		0.1872 (6) 0.0767 (7)	0.5509 (6)	3.2 (5)
C(30)	-0.2900 (12)	0.0707 (7)	0.3663 (7)	5.3 (3)

 $^{a}B_{iso}$ is the mean of the principal axes of the thermal ellipsoid.

 $(PPh_3)_2SR$ with SO₂ which has resulted in the isolation and structural characterization of CpRu(PPh₃)(SO₂)(S(SO₂)-4-

Present address: National Research Council, Institute of Environmental (1)Chemistry, Montreal Road, Ottawa, Ontario, Canada K1A OR6.

Table III. ¹H NMR Data for $CpRu(PPh_3)(SO_2)(S(SO_2)R)$ (2a-c) and $CpRu(PPh_3)_2(S(SO_2)R)$ (3a-c)^{*a*,*b*}

complex	C3H3	CH3	C ₆ H ₄	CHMe ₂	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
$2a, R = 4 - C_6 H_4 Me$	5.01	2.09	6.94°			
2b , R = $1 - C_3 H_7$	4.94	0.80 ^d			2.33 ^e 2.46 ^e	1.50
$2c, R = CHMe_2$	5.06	1.32 ^g 1.26 ^g		2.85 ^k		
3a	4.48	2.13 ⁱ				
3b	4.60	0.70			2.20	1.50
3c ^k	4.77	1.51 ¹ 1.48 ^m		2.83 ^{<i>h</i>}		

^aIn C₆D₆, under SO₂(g), reported in ppm. ^bPhenyl resonances of PPh₃ appeared in the range 6.82–7.82 ppm. ^cDoublet, relative intensity = 1, J(H-H) = 8.4 Hz; the other doublet not observed due to overlap of other peaks. ^dTriplet, J(H-H) = 7.4 Hz. ^cMultiplet, relative intensity = 1. ^fMultiplet. ^sDoublet, J(H-H) = 6.7 Hz. ^hSeptet. ⁱNot observed due to overlap of other peaks. ^jTriplet, J(H-H) = 7.2 Hz. ^kExcess PPh₃ present. ^lDoublet, J(H-H) = 6.0 Hz. ^mDoublet, J(H-H) = 8.4 Hz.

 C_6H_4Me), a molecule with apparent cooperative bonding between the Ru-bonded and the S-bonded SO₂ groups.

Results

Treatment of a concentrated THF solution of CpRu-(PPh₃)₂S-4-C₆H₄Me (1a) with SO₂, pouring the solution into SO₂-saturated ether, and filtering gave a red solution from which CpRu(PPh₃)(SO₂)(S(SO₂)-4-C₆H₄Me) (2a) was obtained. Elemental analysis was consistent with the formulation above, and the infrared spectrum displayed bands¹² attributed to SO stretching modes at 1283 and 1258 cm⁻¹. The structure is depicted in Figure 1; the crystal data and atomic coordinates appear in Tables I and II, respectively.

The structure is a piano stool with two SO₂ groups. One, a ligand, is bonded to the ruthenium atom which is coplanar with the plane formed by the sulfur and the two oxygen atoms (the ruthenium atom lies 0.053 Å above the plane). The Ru–S(2) bond distance is 2.121 (3) Å, close to the range observed for similar complexes^{3a} but a little shorter than that observed for [Ru-(NH₃)₄(SO₂)Cl]⁺¹³ (Ru–S = 2.223 Å). The thiolato sulfur-to-ruthenium distance (Ru–S(1)) is normal¹⁴ at 2.382 (3) Å. The Ru–P distance is 2.352 (3) Å, slightly longer than for analogous compounds.^{5a,15}

The other SO₂ is bonded to the sulfur atom of the thiolato group. The thiolato sulfur atom (S(1)) lies well out of the plane formed by the sulfur atom S(3) and the two oxygen atoms (S(1) lies 2.719 (18) Å above the plane). Thus, the geometry about S(3) is strongly pyramidal. The S-SO₂ distance, 2.844 (5) Å, is much longer than that in Cu(PPh₂Me)₃S(SO₂)Ph (2.530 Å),⁸ which also contains a SO₂ group attached to a thiolato ligand, but is much shorter than the sum of the van der Waals radius (3.70 Å). The X...SO₂ distances where X = O^{16a} are close to that seen in 2a (Me₂O·SO₂, 2.87 Å; H₂O·SO₂, 2.82 Å), while for X = N^{16b,c} the distances are much shorter (Me₃N·SO₂, 2.26 Å; Me₂HN·SO₂, 2.34 Å; pyridine·SO₂, 2.61 Å; tetramethyl-*p*phenylenediamine·2SO₂,^{16c} 2.39 Å).

The central sulfur atom of the S-bonded SO₂ group in 2a is much more pyramidal than that in the copper complex. The angle α between the S-S vector and the SO₂ plane is only 17° in 2a while it is 35° in the copper adduct. In the adducts Me₂O·SO₂ and H₂O·SO₂ the values of α are 4 and 20°, respectively, while

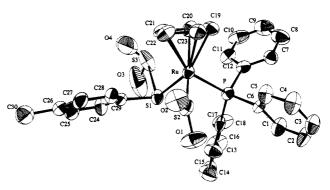
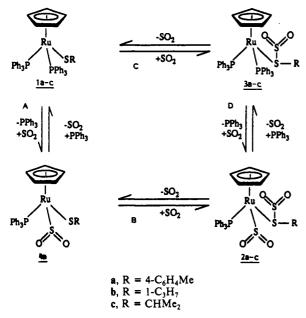


Figure 1. ORTEP drawing of $CpRu(PPh_3)(SO_2)(S(SO_2)-4-C_6H_4Me)$ (2a). Bond lengths (Å) and angles (deg) are as follows: S(1)-S(3), 2.844 (5); Ru-S(1), 2.382 (3); Ru-S(2), 2.121 (3); Ru-P, 2.352 (3); S(1)-C(29), 1.788 (10); S(3)-O(4), 1.319 (13); S(3)-O(3), 1.420 (14); S(2)-O(2), 1.469 (7); S(2)-O(1), 1.405 (8); S(1)-Ru-S(2), 94.76 (11); S(1)-Ru-P, 88.83 (9); S(2)-Ru-P, 94.14 (10); O(1)-S(2)-O(2), 111.2 (5); Ru-S-(2)-O(1), 129.3 (3); Ru-S(2)-O(2), 119.5 (3); O(3)-S(3)-O(4), 112.1 (9); S(1)-S(3)-O(3), 94.6 (6); S(1)-S(3)-O(4), 103.3 (9); Ru-S(1)-S-(3), 109.05 (13); Ru-S(1)-C(29), 110.7 (4); S(3)-S(1)-C(29), 96.9 (4).

in the amine adducts α is in the range 9-22°. In comparison α is 89° for the Ru-bonded SO₂ ligand. Also of interest is the S(2)-Ru-S(1)-S(3) dihedral angle, which, at 171°, makes the Ru-bonded SO₂ group's plane nearly parallel to the S(1)-S(3) vector. Furthermore, the two SO₂ planes are mutually orthogonal (91°).

In order to determine the events leading to 2a the interactions of $CpRu(PPh_3)_2SR$ with SO₂ were monitored in C₆D₆ via ¹H NMR spectroscopy (5 mg of 1a-c in 0.7 mL C₆D₆), where R = $4-C_6H_4Me$ (1a), $1-C_3H_7$ (1b), and CHMe₂ (1c). The results are consistent with Scheme I. In the case of 1a,b, a rapid stream of SO_2 for 15 min led to their consumption and the appearance in the NMR spectra of Cp peaks corresponding to intermediates 3a,b together with those corresponding to the final products 2a,b and free PPh₃ in the appropriate integrated intensity. For 1c only one Cp peak, assigned to the final product 2c, was observed. Further bubbling of SO_2 led to more **2a**, **b** at the expense of peaks due to 3a,b. Complete conversion of 1a to 2a required 4 h, while 15 min gave a final 2b:3b ratio of 6. When excess PPh₃ was added to NMR samples of 1a and 1c, followed by treatment with SO₂ for 15 min, peaks due to 2a and 2c were not observed. In the case of 1a, peaks due to a mixture of 1a and 3a were observed, while for 1c only peaks due to 3c were observed.

The NMR data for **2a-c** and **3a-c** are given in Table III. Diastereotopic methyl groups were observed for **3c**, suggesting


⁽¹²⁾ Four bands are expected, two from each SO₂ moiety;^{3b} however, the bands in the neighborhood of 1100 cm⁻¹ are obscured by those due to PPh₃.

 ⁽¹³⁾ Vogi, L. H.; Katz, J. L.; Wiberley, S. E. Inorg. Chem. 1965, 4, 1157.
 (14) Osakada, K.; Yamamoto, T.; Yamamoto, A.; Takenaka, A.; Sasada, Y.
 (15) Construct Chem. Construction of the state of the

⁽¹⁾ Social and State 1985, 105, L9.
(15) (a) Wilczewski, T.; Dauter, Z. J. Organomet. Chem. 1986, 312, 349.
(b) Bleeke, J. R.; Rauscher, D. J. Organometallics 1988, 7, 2328. (c) Cesarotti, E.; Anguletta, M.; Walker, N. P. C.; Hursthouse, M. B.; Vefghi, R.; Schofield, P. A.; White, C. J. Organomet. Chem. 1985, 286, 343.

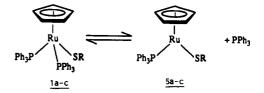
^{(16) (}a) Oh, J. J.; Hillig, K. W., II; Kuczkowski, R. L. Inorg. Chem. 1991, 30, 4583 and references therein. (b) Oh, J. J.; Hillig, K. W., II; Kuczkowski, R. L. J. Am. Chem. Soc. 1991, 113, 7480 and references therein. (c) Childs, J. D.; van der Helm, D.; Christian, S. D. Inorg. Chem. 1975, 14, 1386.

Scheme I

that the rate of exchange of the SO_2 group is slow on the NMR time scale in contrast to the SO₂ adduct of CpW(CO)₂(PPh₃)-SCHMe2.9 Similarly, diastereotopic methyl groups were observed for 2c. On the other hand, no evidence for the presence of diastereomers of 2a-c was detected despite the presence of two chiral sites. The Cp resonance of pure 2a was invariant between room temperature and -65 °C. Characterization of the infrared $\nu(SO)$ bands of the complexes was not possible due to the presence of excess SO_2 , which was always present except in the case of pure 2a.

Treatment of a more concentrated solution of 1a in $C_6 D_6$ (10) mg in 0.7 mL) with SO_2 (10 min) gave an orange precipitate in a red solution. An NMR spectrum was taken of this slurry as formed, and equal amounts of 2a and 3a but no 1a were detected in the red mother liquors. The slurry was rapidly evaporated to dryness under vacuum and the residue redissolved in C_6D_6 whereupon no 3a was present but 1a and 2a were detected in equal amounts. When SO₂ was again passed through the solution, the precipitate formed again and only 2a and 3a in equal amounts were detected in the NMR spectrum. The re-formed slurry was filtered. The NMR spectrum of the orange precipitate revealed the presence of 3a and 1a, the latter presumably due to loss of SO_2 from 3a. The red filtrate contained 2a. The experiment indicates the facile interconversion of 1a and 3a and the relatively high stability of 2a with respect to loss of SO₂.

The reaction of 1a with SO₂ was monitored as a function of time at high and at low concentrations of SO_2 . At a high concentration of SO_2 (continuous rapid flow of SO_2 for 10 min), the NMR spectrum revealed only equal amounts of 2a and 3a after 10 min. After 1 h the ratio 2a:3a was 9:1. On the other hand, at a low concentration of SO₂ (0.5 mL of SO₂(g) in 0.7 mL of C_6D_6) the reaction mixture consisted of only 1a and 2a in the ratio 1:6 after only 2 min. Addition of another 0.5 mL of $SO_2(g)$ after 12 min gave enrichment of 2a at the expense of 1a without the presence of 3a. The sample was purged with N_2 for 20 min whereupon 1a and 2a were detected in the NMR spectrum now in the ratio 3:2 (i.e. enriched in 1a) with no sign of 3a. The results suggests that significant concentrations of **3a** are possible only in presence of high concentrations of SO2 and early in the reaction before much 1a is converted to 2a.


The facile loss of SO_2 from 3a-c is consistent with the lability observed for all other thiolate-bonded SO₂ adducts observed^{8,9} to date. Thus, the stability of **2a-c** is notable. During the determination of the melting point of 2a, the crystals crumbled to powder at 125 °C and then melted at 138 °C with evolution of a pungent gas. Heating 2a at 130 °C for 20 min gave a new complex, 4a, which was characterized¹⁷ by its NMR and infrared

spectra. The presence of only one $\nu(SO)$ stretching band at 1261 cm⁻¹ led to the tentative formulation¹⁸ of 4a as CpRu(PPh₃)- $(SO_2)S-4-C_6H_4Me$.

The SO₂ ligand is similar to the CO group with respect to its σ -donor and strong π -acceptor abilities.¹⁹ Thus, the CO complex $CpRu(PPh_3)(CO)SCHMe_2$ in C_6D_6 was treated with SO₂ to give a new adduct $CpRu(PPh_3)(CO)(S(SO_2)CHMe_2)$, as indicated by its NMR and infrared spectra.²⁰ The NMR sample was evaporated to dryness under vacuum and the residue redissolved in C_6D_6 . The spectrum was unchanged, which suggests that the new adduct possesses the same high stability with respect to loss of SO₂ as do 2a-c.

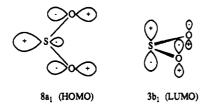
Discussion

The reactivity of **1a--c** is dominated^{5a,7} by the influence of the thiolato ligand. The HOMO of such complexes²¹ is thought to be high in sulfur-p character and to be antibonding due to π donation by the thiolato ligand. The two relatively poor π -accepting and bulky PPh₃ groups appear unable to compensate for the buildup of electron density; steric acceleration may also contribute to greater reactivity. However, π -donation from the thiolato sulfur atom stabilizes the 16-electron intermediate 21,22 formed by loss of PPh₃. Thus, the lone pairs on the sulfur atom destabilize the ground state and stabilize the coordinatively unsaturated intermediate leading to an equilibrium between the two.

We have shown⁵ that the presence of the strong π -accepting CO ligand stabilizes the complexes CpRu(PPh₃)(CO)SR with respect to ligand loss. The results above suggest (1) that SO_2 can also stabilize the system and (2) that adduct formation between SO_2 and the thiolato sulfur atom greatly reduces the latter's influence.

The inhibitory effect of the presence of excess PPh₃ on the production of 2a and 2c, but not on 3a and 3c, is consistent with Scheme I. The SO_2 concentration dependence of the reaction is also understandable. For 1a, SO_2 at low concentrations attacks the coordinatively unsaturated intermediate 5a rapidly shifting the equilibrium and generating solely 2a, presumably via 4a (steps A and B in Scheme I). The spectra did not change beyond 2 min after addition of the first small aliquot of SO_2 , and a further addition was required to produce more 2a, 3a never being detected. Thus, the product distribution is dependent on SO_2 concentration, as well as time, consistent with rapid attainment of equilibria which greatly favor 2a. However, at high concentration, equilibrium C is also established, which produces 3a. This depletes the concentration of 1a, thus slowing the production of 2a via steps A and B. The conversion of 3a to 2a (step D) is much slower than that of 1a. This is due to the attack of the SO_2 on the thiolato sulfur atom's lone pair in 3a. The resulting rehybridization would decrease the π -donation from this atom and concomitantly decrease the activation of 3a. There would also be less stabilization

- (21) Ashby, M. T.; Enemark, J. H.; Lichtenberger, D. L. Inorg. Chem. 1988, 27, 191
- (a) Ashby, M. T.; Enemark, J. H. J. Am. Chem. Soc. 1986, 108, 730. (22)(b) McCleverty, J. A.; Drane, A. S.; Bailey, N. A.; Smith, J. M. A. J. Chem. Soc., Dalton Trans. 1983, 91.


⁽¹⁷⁾ ¹H NMR (C_6D_6) for CpRu(PPh₃)(SO₂)S-4-C₆H₄Me: 7.63 (m, 6 H, PPh₃), 6.98 (m, 9 H, PPh₃), 7.26 and 6.59 (ABq, 4 H, J(H-H) = 8.3 Hz, 4-C₆H₄Me), 4.66 (s, 5 H, C₅H₅), 1.89 (s, 3 H, 4-C₆H₄CH₃). Thiolato-bonded SO₂ groups are easily removed,^{8,9} therefore, the band

at 1261 cm⁻¹ is assigned to a Ru-bonded SO₂ group. Conway, P.; Garil, S. M.; Manning, A. R.; Stephens, F. S. *Inorg. Chem.* **1983**, *22*, 3714. (19)

Data for CpRu(PPh₃)(CO)(S(SO₂)CHMe₂ are as follows. ¹H NMR (C₆D₆): 7.61 (m, 6 H, PPh₃), 7.02 (m, 9 H, PPh₃), 4.86 (s, 5 H, C₃H₃), 2.87 (septet, 1 H, J(H-H) = 6.7 Hz, $CHMe_2$), 1.46 and 1.44 (dd, 6 H, CH₁(CH₃)₂). IR (Nujol) (SO): 1254 cm⁻¹. IR (C₆D₆) (CO): 1945 (20)cm'

of the hypothetical 16-electron intermediate $CpRu(PPh_3)(S-(SO_2)-4-C_6H_4Me)$ implied in step D.

The S-SO₂ bond distance in **2a** (2.844 (5) Å) is much longer than that in Cu(PPh₂Me)₃(S(SO₂)Ph) (2.530 Å). The HOMO and LUMO of SO₂^{3a} are shown as follows:

The Lewis acid character of an SO₂ adduct is inversely proportional to α defined above. At the extreme when α is 90°, as for the Ru-bonded SO₂ ligand, it acts as a Lewis base. At the other extreme, when α is 0°, the SO₂ group would be considered a Lewis acid. Consequently, the thiolate-bonded SO₂ in **2a** has higher Lewis acid character ($\alpha = 17^{\circ}$) compared to that in Cu-(PPh₂Me)₃(S(SO₂)Ph) ($\alpha = 35^{\circ}$). The 3b₁ orbital is high in p character, while the 8a₁ orbital is sp² hybridized. Therefore, a thiolate-SO₂ bond with a small α value would be high in p character and the S-SO₂ bond distance might be expected to be longer than a thiolate-SO₂ bond with a large α value. The interaction distances of SO₂ adducts have been shown¹⁶ to be very sensitive to the relative basicities of the donor atoms.

Surprisingly, 2a loses SO₂ much more reluctantly than the copper complex⁸ despite the longer S-SO₂ bond distance of the former. Of interest is the possible effect of the Ru-bonded SO₂ ligand. In 2a the Ru-bonded SO₂ ligand has its empty $3b_1 \pi$ -orbital in the proper orientation to accept electron density from the metal. The SO₂ ligand is a strong π -acceptor,¹⁹ and indeed if a different strong acceptor ligand is present as in CpRu-(PPh₃)(CO)(S(SO₂)CHMe₂) (4a), the complex is also unusually resistant to SO₂ dissociation. One might therefore postulate a cooperative interaction between the S-bonded and the Ru-bonded SO₂ groups, via the thiolato sulfur atom and the ruthenium atom.

The complexes 2a-c have two chiral centers, one at the metal center assumed to be configurationally stable²³ and the other at S(1). Consequently there should be a pair diastereomers observable in their NMR spectra, but such was never the case. The observation of peaks due to the diastereomeric methyl groups of 2c confirms the presence of at least one chiral site which is configurationally stable on the NMR time scale. This rules out rapid exchange of the S-bound and Ru-bound SO₂ groups, which would invert both centers and impose a time-averaged mirror plane on the molecule. One might postulate that rapid inversion occurs at S(1). However, CpRu(PPh₃)₂(S(SO₂)CHMe₂) (3c), which possesses only the chiral site at the thiolato sulfur atom, also displayed diastereotopic methyl groups in the NMR spectrum. There is no compelling reason to assign to 2c a lower inversion barrier at S(1) than to 3c. It is also notable that the SO_2 adduct $CpRu(PPh_3)(CO)(S(SO_2)CHMe_2)$ also displayed only one set of peaks between room temperature and -65 °C and showed diastereotopic methyl groups. The tentative conclusion is that only one diastereomer is present. This may also be a reflection of the precise combination of electronic and steric factors leading to the enhanced stability of 2a-c.

The complexes of Scheme I are models of hypothetical intermediates whereby SO_2 might "insert" into the Ru-SR bond to give a Ru-S(O)₂SR moiety. Complexes containing a S-bonded SO_2 group model an insertion reaction wherein SO_2 first attacks the ligand to be followed by rearrangement, a process similar to that observed for insertion of SO_2 into a metal-carbon bond. The complexes containing a Ru-bound SO_2 group model an attack by SO_2 on the metal first, to be followed by migration of the ligand, a process analogous to carbonyl insertion into metal-carbon bonds. However, there was no evidence that any of the complexes reported

(23) At least on the NMR time scale.

here were precursors to insertion products.

Experimental Section

The general techniques used have been described in the literature.^{5a} Tetrahydrofuran was refluxed over sodium/benzophenone and distilled under N_2 prior to use. The compound RuCl₃·3H₂O was kindly supplied by PGM Chemicals Ltd., New Germany, South Africa; SO₂, Linde, was used as received.

Nuclear magnetic resonance (NMR) spectra were recorded on a Varian XL-200 or XL-300 spectrometer. All NMR samples were prepared under N_2 atmosphere using benzene- d_6 , degassed by freeze-thaw degassing under vacuum. Chemical shifts are reported in ppm relative to tetramethylsilane, used as an internal standard. Elemental analyses were performed by Spang Microanalytical Laboratories, Eagle Harbor, MI. Melting points were obtained on a Thomas Hoover capillary melting point apparatus in a sealed capillary tube under a nitrogen atmosphere and are uncorrected.

Cyclopentadienyl (triphenyl phosphine) (4-methyl benzenethiolato) ruthenium(II) Ru,S-Bis(sulfur dioxide), CpRu(PPh₃)(SO₂)(S(SO₂)-4-C₆-H₄Me) (2a). A Schlenk tube was charged with 1a (0.3710 g, 0.456 mmol) and THF (4 mL). Sulfur dioxide was bubbled through the solution for 1 h to give an orange precipitate in a red supernatant. The slurry was poured into 40 mL of diethyl ether which had been previously saturated with SO_2 . The slurry was filtered under N_2 and the filtrate was left to stand under SO₂, whereupon deep red crystals slowly formed. The mother liquors were decanted and saved. The crystals were washed with hexanes $(2 \times 2 \text{ mL}, \text{ at } -78 \text{ °C})$ and briefly dried under vacuum. The mother liquors were cooled to -78 °C and, upon standing, gave a second crop of 2a as crystallographic grade crystals, total yield = 34%. During the melting point determination the crystals lost their crystallinity at 125 °C and melted at 138 °C with evolution of SO₂, which was detected by its pungent smell when the melting point capillary was broken open. IR (Nujol): $\nu(SO) = 1283$ (m), 1258 (m) cm⁻¹. ¹H NMR (C_6D_6) : 7.87 (d, 2 H, J(H-H) = 8.0 Hz, $4-C_6H_4CH_3$), 7.65 (m, 6 H, PPh₃), 6.95 (m, 9 H, PPh₃), 6.88 (d, 2 H, 4-C₆H₄CH₃), 4.61 (s, 5 H, C₅H₅), 2.09 (s, 3 H, 4-C₆H₄CH₃). Anal. Calcd for C₃₀H₂₇O₄PRuS₃: C, 53.01; H, 4.00; S, 14.15. Found: C, 53.49; H, 3.70; S, 12.92.

X-ray Structure Determination. Table I contains the crystal parameters for 3a. A thin rectangular red crystal $(0.07 \times 0.28 \times 0.36 \text{ mm})$ was glued with epoxy to the inside of a thin-walled glass capillary which was sealed under N2. All dimensions were obtained from 15 reflections with 2θ in the range 45.00–65.00°. A total of 4389 independent reflections having 2θ (Cu K α) < 120.0° were collected (-11 $\leq h \leq$ 11, 0 \leq $k \le 20, 0 \le l \le 18$) using the $\theta/2\theta$ scan mode (merging R is 2.8%). A ψ correction was made for absorption.²⁴ The structure was solved by the Patterson method.²⁵ The resulting structural parameters were refined to convergence (R_w , based on counting statistics) for 3615 reflections for which $I > 3\sigma(I)$. An extinction correction was made. Anisotropic themal parameters for all non-hydrogen atoms were used except for C(30), which could not be refined anisotropically to give reasonable off-diagonal tensor elements. The large anisotropic thermal parameters observed for O(3) and O(4) are consistent with the large thermal motion observed in other SO₂ adducts.^{16c} The S-bonded SO₂ group does not show the extreme structural distortions associated with disordered structures.⁸ All hydrogen atoms, except those of C(30) were added in calculated positions with the mean isotropic thermal parameters of their carbon atoms.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada and the Quebec Department of Education for financial support and for scholarships to P.-Y.P. Stephen von Loggerenberg of PGM Chemicals, Ltd., is thanked for a generous gift of $RuCl_3 \cdot xH_2O$. Dr. Jim Britten is acknowledged for solving and refining the crystal structure.

Supplementary Material Available: Listings of anisotropic temperature factors (Table IV), hydrogen atom coordinates and temperature factors (Table V), and bond length and angles (Table VI) (4 pages); a listing of observed and calculated structure factors for $CpRu(PPh_3)(SO_2)(S-(SO_2)-4-C_6H_4Me)$ (Table VII) (22 pages). Ordering information is given on any current masthead page.

⁽²⁴⁾ The data, supplied by Crystalytics Co., Lincoln, NE, was collected on a computer-controlled four-circle Nicolet diffractometer. Atomic scattering factors were from: *International Tables for X-ray Crystallography*; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 99-101.

⁽²⁵⁾ The solution and refinement was conducted using NRCVAX programs: Gabe, E. J.; LePage, Y.; Charland, J. P.; Lee, F. L.; White, P. S. J. Appl. Crystallogr. 1989, 22, 384.